Ethylene Oxide Sterilization

One Integrated Approach to Healthcare.
Continuing Education Contact Hours

- Participants must complete the entire presentation/seminar to achieve successful completion and receive contact hour credit. Partial credit will **not** be given.

- All of the presenters are employees of STERIS Corporation and receive no direct compensation other than their normal salaries for participation in this activity.

- STERIS Corporation is an approved provider of continuing nursing education by the California Board of Registered Nursing, provider number CEP 11681 for 1 contact hour along with IAHCSMM and CBSPD.

- STERIS Corporation is providing the speakers and contact hours for this activity. However, products referred to or seen during this presentation do not constitute a commercial support by the speakers.
Objectives

Upon completion of this course, you will be able to:

Describe Ethylene Oxide (EO) as a low temperature method of sterilization

Review recommended procedures when performing EO sterilization
What is Ethylene Oxide?

- \(\text{C}_2\text{H}_4\text{O} \)
- Colorless gas
- Smells like ether
- Sporicidal
- Non-corrosive
- Readily permeates
- Small percentage used in healthcare to sterilize heat and ethylene oxide molecule and moisture sensitive devices
Historical Perspective

1859
EO discovered (fumigation)

1929
EO/CO₂ patented for insecticide and microbial properties

1930
Fumigant for spices, gums, cereals
1940
100% EO patented as agricultural fumigant

1949
EO identified as a sterilant (Ft. Detrick)

1950
100% EO used for heat sensitive medical devices

1960’s
EO blends available
1980’s: Safety issues surface (OSHA)

1990’s: Environmental issues

Today: 100% EO
Advantages

• Effective at low temperature/low moisture levels
• Excellent penetration with no lumen restrictions
• Widely accepted by device manufacturers
 – Material compatibility
 – Non-corrosive
• Relatively low capital equipment cost
• Effective on a wide range of microorganisms
Limitations

- Long cycle times with aeration
- Expensive installation requirements
- EtO monitoring required
- Toxicity
 - Known health hazard and carcinogen to humans
- Installation requirements: dedicated exhaust, disposer, etc.
- Refer to AAMI ST 41
Ethylene Oxide (EO)

- Kills by alkylation
- Combines with genetic material in cell, destroys ability to metabolize and reproduce
- Effects: irreversible, causes cell death
- Used in industry and hospitals
- Mixed blends now outlawed
100% EO

- Single-use cartridges
- Reduced flammability
- Increased productivity and cost savings
- Safety features minimize operator exposure
EO Sterilizer Key Components

- Cycle Selector
- Touch Pads & Display
- Gasket
- Single-use Cartridge
- Impact Printer
- Envirogard
- In Chamber Aeration
- 5 Cubic Foot Chamber
100% EO

- Increased productivity and cost savings
- Higher concentration of EO
- Not paying for expensive inert gases
- Safety features minimizes operator exposure:
 - In-chamber placement
 - Vacuum cycles
 - In chamber aeration
- Chamber operates under negative pressure
100% EO Sterilization Phases

- Preconditioning
- Conditioning
- Exposure
- Exhaust
- Aeration
EO Sterilization Parameters

- EO gas concentration
 - 740-100 mg/L

- Relative humidity
 - 40-80% (critical to penetration of bacterial cells and successful sterilization)

- Temperature
 - High 145 F (63 C)
 - Low 98 F (37 C)

- Exposure
 - Varies between 1-6 hours
Preconditioning

- Chamber is sealed
- Vacuum is pulled
- Chamber begins to heat devices to preselected temperature (usually 100 or 130° F)
Conditioning

• Humidification – steam in
• Vacuum pulls and moisture purges
• Humidity at preset range
• EO sterilant and pressure rises
Exposure

- Sterilization
 - 1 hour at 130 F
 - 4.5 hours at 100 F
- Chamber maintained at selected:
 - EO concentration
 - Temperature
 - Humidity
 - For prescribed time
Exhaust

• Vacuum is drawn
• Filtered air wash
• Aeration
Aeration Requirements

- Removes residual EO before use or storage
- Device manufacturer provides parameters
- Single-chamber process required
- Sterilization and aeration must occur in the same chamber
 - 12 hours at 130 F (37.8 C)
 - 36 hours at 100 F (54.4 C)
- The load cannot be physically moved until aeration is complete
What Happens to Aerator Exhaust?

- Most Common
 - Non-recirculating
 - Dedicated exhaust to atmosphere
- Clean Air Act of 1990
- EPA regulates EO
- Some states require emission control systems to treat aerator exhaust
Safe Work Practices are Essential

Carelessness can be hazardous to your health!
EO Must Be Used With Care

- Known human carcinogen
- Improper use hazard
- Acute exposure
 - Irritation, CNS depression
- Chronic inhalation
 - Cataracts, cognitive impairment, neurologic dysfunction
- Occupational exposure
 - Hematologic changes, some cancers
EPA EtO National Emission Standards

March 2008
• Sterilize full loads
• Demonstrate and submit compliance status with management practice standard

Record keeping
• Compliance status
• Sterilizers not equipped with air pollution control devices

March 2010
• Single chamber process – no separate chamber
Preparing Devices for EtO

Follow manufacturer IFUs
- Cleaning/decontamination
- Packaging/loading/unloading
- Aeration
Items Must Be Clean And Dry!

- $H_2O + EO = \text{Ethylene Glycol}$
Packaging Materials

- Must be validated
- Allows penetration
- Removal during aeration
- Withstands rapid air removal during vacuum
- Withstands normal handling
- Economical
- Readily available
Packaging Materials

• Natural or synthetic woven textiles
• Non-woven, disposable, flat wrappers
• Polypropylene, cellulose fibers, cellulose-polyester
• Plastic/paper peel pouches
• Tyvek
• Rigid containers
• Limit use of absorbent surgical towels in sets
Inappropriate Packaging Materials

- Nylon/Teflon
- PVC (Saran Wrap)
- Mylar
- Cellophane
- Aluminum foil

STOP
Accessories
Loading Peel Pouches

- Verify package integrity
- Place peel pouches on edge
- Arrange plastic to paper
- Use perforated, wire mesh bottom trays
Loading Carts or Baskets

- Use metal baskets only
- Load in loose fashion
- No contact with walls of chamber
- Load to avoid contact if transferring for aeration
Aeration

• Removes toxic EO residues
• Same temperature as sterilization
• Series of pulses introduced, vacuum pulled, cycle repeated

• Factors determining aeration time
 • Sterilization/aeration system used
 • Wrapping materials/containers
 • Design/weight of devices
 • Size/arrangements of packs
Why is Aeration Essential?

• With premature removal, EO exposure can occur
• Adverse health effects through long term exposure
 – ‘ambient air’ aeration is not recommended
• No one is off the hook by signing a waiver
Quality Assurance

- Physical monitors
- Chemical indicators
- Biological indicators
- Environmental monitors
Chemical Indicators

- Indicator of sterilant conditions present
- External indicators
- Internal indicators
 - Placed in most challenging area for sterilant penetration
Biological Indicators

• Sterilization verification
• Bacillus atrophaeus (subtilis)
• Control biological
• Follow BI manufacturer instructions
• Routine monitoring
 – Test EVERY sterilization cycle

Installation Testing

• Verification of sterilizer efficacy
 – After installation of new sterilization
 – After major repairs
 – Relocation
 – Unexplained sterility failure
 – Change in gas supply, chamber load patterns

• Three consecutive cycles – negative results
• Utilize challenge pack (AAMI ST 41)
Record Keeping

• Load record
• Cycle documentation
• Chemical and biological indicator results
• Preventive maintenance/service records
• Records kept according to state and local statutes
• Sterilization malfunction
 – Remove sterilizer from service
 – Determine sterility of load
Occupational Exposure Limits

- Occupational Safety Health Administration (OSHA)
- Established limits, 1984
- Updated limits, 1987
- Limits at breathing zone of worker
Occupational Exposure Limits

- **Time Weighted Average (TWA)**
 - Average personnel exposure during specific period of time

- **Permissible Exposure Limit (PEL)**
 - Maximum EO exposure allowed in 8 hours
 - 1 ppm EO is the 8 hour TWA

“Code of Federal Regulations” (CFR)
(Section 1910, Subpart Z, Toxic and Hazardous Substances)
Occupational Exposure Limits

• Action Level – AL
 – EO exposure level above which OSHA requirements apply
 – 0.5 ppm is 8 hour TWA

• Excursion Limit – EL
 – OSHA term to define short-term exposure limit
 – 5 ppm is 15 minute TWA
Environmental Monitors

Area monitoring

Personnel monitoring
Action Item

Your policy and procedures should be in-line with recommended standards (AAMI ST 41/EPA National Emission Standards).

Also, ensure your team understands the policy and procedures. This will ensure your facility’s compliance and safe practice.
References

- Association for the Advancement of Medical Instrumentation, Ethylene Oxide Sterilization in Healthcare Facilities: Safety & Effectiveness AAMI ST41:2008 Arlington, VA

- Association of periOperative Registered Nurses, Recommended Practice for Sterilization in the Practice Setting, Denver, CO, 2010, AORN

- Occupational Safety and Health Administration, (OSHA), Occupational Exposure to Ethylene Oxide, Final Standard (29 CFR 1910.1047)

- Ball, KA, Endoscopic Surgery, St. Louis, MO, 1997, CV Mosby, Inc.

- Reichert, M and Young, J, Sterilization Technology for the Health Care Facility, Gaithersburg, MD, 1997, Aspen Publishers, Inc.

- United States Environmental Protection Agency (EPA), Re-registration Eligibility Decision for Ethylene Oxide, March 31, 2008
Questions
STERIS UNIVERSITY

ONE PARTNER infinite connections

Consulting, Design and Planning
Lean Process Workflow
Service
High Performing Environments
Products
Education

This is the power of...

Solutions designed to service you best when they are connected. Facing unforeseen challenges together with a single vision.

One Integrated Approach to Healthcare.

STERIS
Playing a part in your professional development today
To help you achieve your career vision for tomorrow

university.steris.com
Ethylene Oxide

- **AAMI/ANSI 41**
- Devices are clean and dry
 - ETO is sensitive to the presence of residual soil
- Low pressure (vacuum) systems
 - Venting cap required
- Sterilization parameters validated by endoscope manufacturer
 - Conditioning, sterilization and aeration
- Post-sterilization aeration is essential
 - Processing time typically >18 hours
- May have a limited number of cycles before requiring extensive repair